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ABSTRACT: Stabilizing osmolytes are known to impact the process of
amyloid aggregation, often altering aggregation kinetics. Recent evidence
further suggests that osmolytes modify the peptide conformational dynamics,
as well as change the physical characteristics of assembling amyloid fibrils. To
resolve how these variations emerge on the molecular level, we simulated the
initial aggregation steps of an amyloid-forming peptide in the presence and
absence of the osmolyte sorbitol, a naturally occurring polyol. To this end, a
coarse-grained force field was extended and implemented to access larger
aggregate sizes and longer time scales. The force field optimization procedure placed emphasis on calibrating the solution
thermodynamics of sorbitol, the aggregating peptide in its monomeric form, and the interaction of both of these components
with each other and with water. Our simulations show a difference in aggregation kinetics and structural parameters in the
presence of sorbitol compared to water, which qualitatively agree well with our experimentally resolved aggregation kinetics of
the same peptide. The kinetic changes induced by sorbitol can be traced in our simulations to changes in monomer
conformations resulting from osmolyte presence. These translate into changes in peptide conformations within the aggregated
clusters and into differences in rates of monomer nucleation and of association to formed fibrils. We find that, compared to pure
water as solvent, the presence of sorbitol induces formation of more aggregates each containing fewer peptides, with an increased
tendency toward parallel interpeptide contacts.

■ INTRODUCTION
Under conducive conditions, many proteins and peptides
spontaneously aggregate into ordered amyloid fibrils.1−3

Importantly, the early aggregates of certain amyloid forming
peptides are associated with several devastating diseases,
motivating numerous studies aimed at understanding the
kinetics and thermodynamics of the onset of amyloid
aggregation.4−6 Osmolytes, also called chemical chaperones,
are naturally occurring small molecules that are found at high
concentrations in cells. Their role in stabilizing the proteome
under conditions of environmental stress is well documented.7,8

Moreover, the ubiquitous favorable action of osmolytes on
protein stability and activity,7,9−12 as well as their widespread
use by different cells and organisms,13,14 makes them a viable
therapeutic option. Indeed, several in vivo and in vitro studies
have shown that amyloid aggregation is inhibited, and in some
cases even reversed, in the presence of polyol osmolytes.15−18

Interestingly, there are indications that osmolytes may, in
addition, alter the morphology of the formed fibrils, thereby
affecting their physical characteristics such as fibril brittle-
ness.19−22 However, the molecular mechanism of osmolyte
action on amyloid formation is not fully understood.
Recently, we have experimentally determined the effect of

several polyol osmolytes on the amyloid aggregation of met16,
a 16 residue β-hairpin peptide.19,23 Of the polyols tested,
sorbitol showed the largest effect on met16 aggregation,
evidenced in the slowing of the nucleation time in comparison

to aggregation in buffer and by the increased amount of
monomers that underwent fibrillation. Analysis of these
experimental results with the aid of a kinetic model19,24 further
suggested that the fibril-monomer pseudodissociation constant,
KD = kof f/kon, decreases as sorbitol concentration increases. In
contrast, the rate constant for fibril breakage, kb, did not change
in the presence of the osmolyte.19

Experimentally, probing the processes that lead to amyloid
aggregation is plagued by many difficulties arising from the
complexity of this stochastic, multiprotein association reaction.
Molecular dynamic simulations (MD) have emerged as a useful
technique to compliment experimental data and help decode
the process of amyloid aggregation at the molecular level.25−27

Indeed, simulations have been used extensively in recent years
to address specific steps in the aggregation process.25,27−30

However, the complexity of the process, the long time scales
involved, and the collective nature of aggregation require
simulations that include a large number of aggregating
molecules and long time scales. In addition, simulations of
the initial stages of the aggregation require not only an accurate
description of the association process but also a faithful
representation of the conformational landscape of single
proteins or peptides. Thus, simulations have been able to
probe mainly isolated events in the extended process of
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amyloid formation and often involve specially tailored force
fields or implicit solvents.29,31,32 Beyond these complications,
simulations of aggregation in the presence of osmolytes must
reliably account for interactions between water, osmolyte, and
protein. Ultimately, such simulations require the use of force
fields that allow access to long time scale dynamics of large
systems. Several coarse-grained (CG) MD force fields have
been developed over the past decade to address such
issues.25,29,32−34 For describing biological macromolecules in
solution, the MARTINI force field is a promising choice since it
has been parametrized using thermodynamic data and has
successfully reproduced experimental variables in relatively
complex solutions.35−37

Here we develop, validate, and implement a CG model to
simulate the initial stages of peptide aggregation in the presence
and absence of sorbitol. The implemented model is based on
the MARTINI force field with further parametrization to
account for polyol osmolytes. The modified force field
quantitatively reproduces several experimentally determined
kinetic and thermodynamic properties of the met16 peptide
and its aggregation process in the presence and absence of
sorbitol. To allow accurate simulations of the folding and
unfolding of the coarse-grained model peptide, pseudodihedral
angles from an all-atom replica-exchange molecular dynamics
(REMD) simulation are incorporated into the CG force field.
In parametrizing the sorbitol model, we use an extensive set of
experimental data that includes partial molar volumes and
preferential interaction coefficients. Finally, the interaction
between sorbitol and met16 is calibrated against the
experimentally determined change in folding free-energy of
the peptide monomer, which reflect changes in peptide
preferential hydration. The resulting accessible time scale and
size of our CG simulations afford unique insights into the first
microsecond of the aggregation process, corresponding to the
time required for prefibrillar aggregate formation, and allow us
to characterize the differences between the initial stages of the
aggregation process in water and in the presence of sorbitol.
Our simulations, shown at representative times for water and

sorbitol solution in Figure 1, demonstrate that sorbitol’s
presence indeed impacts the aggregation process. On the

single peptide level, the presence of sorbitol shifts the monomer
population from the unfolded toward the folded ensemble, with
a particular tendency to decrease the population of highly
extended conformations within the unfolded ensemble. The
presence of sorbitol changes both the kinetics of peptide
aggregation and the resulting conformations of peptides in
clusters. Specifically, sorbitol decreases the rate of monomer
association to clusters as well as the rate of nucleation. Sorbitol
also increases the number of aggregates and decreases their
average size compared to water, as seen in Figure 1. Finally,
sorbitol induces order in formed clusters, favoring a “head-to-
head” peptide orientation. These findings suggest that the effect
of sorbitol on amyloid aggregation kinetics and the
conformations of prefibrillar aggregates occur at the level of
the folded/unfolded monomeric conformations that become
more/less prone toward aggregation in the presence of the
osmolyte.

■ MODEL AND FORCE FIELD CALIBRATION

Peptide Force Field Calibration. The met16 peptide,
shown schematically in Figure 2A, is composed of 16 amino
acids, with the sequence Ac-KKYTVSINGKKITVSI. This
peptide, originally developed as a DNA binding motif,38 has
been extensively studied by us and others, both experimen-
tally39−43 and in simulations,44 as a model of peptide folding
and aggregation. Met16 is a two-state folder, with an
experimentally resolved folding free energy of ΔG ≈ −1.2
kJ/mol in aqueous solution buffered at neutral pH and at room
temperature.43 To simulate the folding/unfolding equilibrium
characteristics of the monomeric peptide in the CG
representation, we adopted the methodology developed by
Seo et al.,45 whereby dihedral angle potentials are inserted into
the CG model based on all-atom (AA) REMD simulations.
This procedure is required because within the original
MARTINI protein force field36 peptides retain a rigid
secondary structure and dihedral angles are not included.
Fixed dihedral angles would be inappropriate for the process we
model, since each peptide would then retain its initially set
conformation, and would not be able to dynamically

Figure 1. Representative snapshots from the time evolution of aggregation simulations. Colors represent β-hairpin (folded, blue) and unfolded (red)
peptides. Clusters are formed over the course of 1 μs. The presence of sorbitol promotes the formation of a larger number of smaller clusters. The
peptides in these clusters show a higher tendency toward the β-sheet conformation of the monomer. Simulation boxes have an edge ∼34 nm long.
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interchange between the different forms of the peptide: folded,
unfolded (or misfolded), and aggregated.23

Probability distributions of the dihedral angles were obtained
from the last 300 ns of a 500 ns AA-REMD simulation, and the
CG dihedrals were taken as the pseudodihedral angles between
the centers of mass of the backbone heavy atoms (Cα, N, C,
and O) of four neighboring residues (See Sections S1−S2 in
the Supporting Information (SI) for additional details on the
REMD simulation.). From these distributions, the free-energy
landscape for each of the 13 dihedral angles is obtained through
the relation Ui = −kT ln Pi, where k is the Boltzmann constant,
T is the absolute temperature, Ui is the potential of mean force
of dihedral angle i, and Pi is the probability density of that angle.
Then, Ui was fit to the functional form given by

θ θ θ= ∑ + −=U k n( ) [1 cos( )]m
n

m m m1 , where typically the
number of terms in the summation, n = 6, but may be as
high as 10, depending on the complexity of the dihedral
probability distribution. The determined values of km, nm, and
θm are used in the dihedral potential of the backbone beads of
the CG peptide, and a 500 ns simulation of a single peptide in
MARTINI water is run to find the dihedral angle distribution of
a single peptide in the CG model. While a least-squares fitting
procedure produces good fits to the energy landscape of a
single dihedral, coupling between neighboring dihedral angles

affects the final distribution and requires a user-guided iterative
process to match the final angle distributions. After ∼30 such
iterations, we arrived at a CG dihedral angle distribution for the
peptide that is in good agreement with the AA analogue (Figure
S3). The calibrated peptide was then simulated in explicit
MARTINI water at 300 K for 10 μs to extensively probe the
conformational landscape of the peptide. While a larger part of
the unfolded conformational space is sampled in the CG
representation (which may be the result of more extensive
sampling in the CG model, or a “smoother” energy surface in
the CG representation), the position of the maxima in the end-
to-end peptide distance, as well as saddle points and overall
shape of the AA-REMD simulations, is well preserved in the
CG representation (shown in Figure S4). All bonded
parameters for the met16 CG model are available in the SI,
appendix 1.

Sorbitol Force Field Calibration. The calibration scheme
for the CG sorbitol model was as follows. We first selected a
MARTINI bead type that closely matched the chemical
characteristics of the polyol groups. This is important because
the choice of bead parameters defines the sorbitol self-
interaction and its interaction with water beads simulated in
the binary solutions. Once the bead was selected, we optimized
internal sorbitol angles, based on AA simulations, and finally
adjusted bond lengths to match experimental partial molar
volumes of sorbitol. With these parameters optimized, we
turned to adjust the sorbitol interactions with peptide moieties.
Importantly, the calibration may require an iterative process
since changes to any single parameter we mention above is
coupled to other optimized parameters. In our case, retesting
the observables after the first round of the described calibration
showed no appreciable change in angle distribution or partial
molar volume of our model. All data shown is taken from
simulations of the final selected model, whose parameters are
available in the SI appendix 2.
The CG sorbitol model we developed, shown in the inset of

Figure 2B, includes three MARTINI beads, each representing 4
heavy atoms (two carbon atoms and two hydroxyl oxygen
atoms) joined by two equidistant bonds. The three beads are
connected by a single angle, defined as the angle between the
centers of mass of each 4 bonded heavy-atoms in an AA
simulation, which was used to calibrate the sorbitol CG model.
Here, the AA simulations of sorbitol are based on a simulation
with the Amber GLYCAM06 force field,46 averaged over the
last half of a 200 ns MD simulation. Details of the calculations
and model used are available in Section S1 in the SI. The
resulting distribution of CG bond angles is shown and
compared with AA results in Figure 2B.
Once the angle is adjusted, we turn our attention to the bond

length between beads. The partial molar volume, v,̅ is a
parameter that sensitively depends on the composition of the
solution as well as the dimensions and interactions of the
molecules and is a good measure for the effective size of the
cosolute. We thus modified bond lengths in order to match
experimental v ̅ values for sorbitol aqueous solutions. To
measure this property in simulations we used CG simulations
of a series of binary solutions with concentrations 0.5, 1.0, 1.5,
2.0, and 3.0 mol/kg and calculated v ̅ from the relation

̅ = ∂ ̅
∂

⎛
⎝⎜

⎞
⎠⎟v x

V
x

( )s
s P T, (1)

Figure 2. Comparisons of calibrated coarse-grained models to
experiment and all-atom simulations. (A) CG met16 model peptide
(showing backbone beads only) in a folded conformation. (B)
Optimized angle distribution between the three CG spheres
(MARTINI), compared with the AA (Amber) simulations. Inset
shows the CG sorbitol model (blue spheres) overlapping the all-atom
model of sorbitol. (C) Partial molar volumes as a function of sorbitol
concentration for various bond lengths. The final selected length for
subsequent simulations based on the fit to experimental data was 2.7
Å. (D) Preferential interaction of CG sorbitol and water. The distance
r is measured between water beads and sorbitol center-of-mass.
(Upper panel) The radial distribution function for water (black) and
sorbitol (red) around a sorbitol molecule. (Lower panel) The
Kirkwood−Buff integrals for sorbitol−water and sorbitol−sorbitol
distributions defined in eq 2, corresponding to the radial distributions
shown in the upper panel. The limiting values for these integrals are
compared to the experimental preferential interaction values, shown as
dashed lines.
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where V̅ is the total box volume per mole of all components,
and xs is the mole fraction of sorbitol. Partial molar volumes in
the simulation are compared with experimentally known values
shown as the solid line in Figure 2C, allowing to select the
model that best fits experiments.47 Thus, sorbitol bond lengths
were set at 2.7 Å to give the smallest deviation from
experiments over the concentration range used in our
simulations. All MARTINI sorbitol parameters are available in
the SI, appendix 2.
Osmolyte-Water Interaction. Once bonded parameters

have been assigned, the nonbonded parameters can be
calibrated. Note that, as previously stated, both bonded and
nonbonded parameters can affect partial molar volumes, so that
proper calibration of both bonded and nonbonded parameters
may require rechecking after parametrization. Initial non-
bonded interactions are defined by the bead selected for
sorbitol from the set of default MARTINI bead types. Our
starting point was the P4 type bead that is also used to
represent water. This choice was motivated by the fact that the
sorbitol molecule contains many hydroxyl groups; we, there-
fore, expected that an appropriate starting point to represent
hydrogen-bond forming osmolyte moieties would be beads that
are similar to water. In addition, the P4 bead has previously
been used in MARTINI models to represent the polyol head
groups of phosphatidylglycerol lipids.35 Since each bead in the
sorbitol model represents the same 4 heavy atoms (i.e., two
carbon atoms and two oxygen atoms), calibration of only a
single bead type is required.
To test the interactions between sorbitol and water in binary

solutions, we used the Kirkwood−Buff (KB) theory of
solutions.48,49 Specifically, we compared experimentally avail-

able KB integrals to those derived from simulations. The KB
integrals, defined as

∫ π= −
=

∞
g r r r( ( ) 1)4 dij

r ij0

2
(2)

are spatial integrals over the radial distribution functions (RDF,
g(r)) of the components i and j. The RDF of sorbitol−sorbitol
and sorbitol−water beads (subscripts ss and sw, respectively) is
shown in Figure 2D. The figure also shows the resulting
integration presented as a function of r, which represents the
limit of integration distance from the center of mass of a
reference sorbitol molecule. Note that as r→∞, the value of
approaches a limiting value, ∞. This limiting value can be
derived experimentally by means of osmometry or using other
techniques49,50 and shows good agreement with our simulated
values. This is to be expected, as the KB integrals in a binary
mixture often closely correspond to the molecular volume of a
species, and these were already calibrated as described in the
previous section.
The undulations seen in the KB integrals (Figure 2D, lower

panel), persisting even at rather large distances, are character-
istic of Lennard-Jones liquids.51 Fitting the bulk region
(r > 15 Å) to a damped sine function of the form = ∞

+ A exp(−r/r0)sin(πr/w) (where ∞, A, r0, and w are fit
parameters) allows estimation of the convergent value of the
integral, ∞. In our CG simulations we found ∞

sw = −0.09 ±
0.04 L/mol and ∞

ss = −0.22 ± 0.01 L/mol for 1.5 mol/kg
sorbitol solution, compared with −0.1 L/mol and −0.25 L/mol
respectively, known from experiments.52

Figure 3. Stability of met16 in the presence and absence of sorbitol. (A) The difference between peptide SASA probability distribution in sorbitol
solution and in water for various sorbitol concentrations shows a distinct threshold value between increased (left of vertical dashed line, folded) and
decreased (right of the line, unfolded) populations. Inset shows SASA distributions for all concentrations used. (B) The change in free energy of
peptide folding with sorbitol concentration derived from simulations and experiments, compared to folding in water. (C) Sorbitol solution viscosity
in experiment and simulations. Viscosity was measured using the diffusion of a sphere (red circles). The diffusion of the peptide was scaled by a
single effective radius to match the same viscosity (black squares) for varying concentrations of sorbitol. Results are compared with experimental
viscosity measurements58 (green triangles). (D−F) Two-dimensional conformational distribution of the fraction of β-hairpin contacts, Q, and the
backbone SASA of CG met16 in the presence of water (D), 0.65 mol/kg sorbitol (E), and 1.1 mol/kg sorbitol (F). Probability density scale (in
percent probability) is shown in panel F. The difference between sorbitol concentrations is most notable in the high SASA (>1500 Å2) tail of the
distribution (see also Figure S7).
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An important consequences of properly calibrating the
model to fit the KB integrals is a good match to solution
osmotic pressure. To compare the osmotic pressure in our
simulations with the experimental values for sorbitol solutions,
we make use of a range of binary solution simulations, with CG
sorbitol concentrations ranging between 0.1 to 1.5 mol/kg, as
described in Section S3 of the SI. This comparison
demonstrates how the CG model well reproduces the osmotic
pressure, a fundamental thermodynamic property of this
sorbitol−water binary solution.
Cosolute-Peptide Interactions in Ternary Mixtures.

The interaction of sorbitol with the peptide monomer is
manifested in the concentration-dependent effect of sorbitol on
the folding free-energy of the peptide, ΔGfold. We have
previously experimentally quantified this effect and its extent
for met16 through the m-value,40,43 defined as m = dΔGfold/
d[cosolute].53 We therefore use the m-value to calibrate the
interaction between the sorbitol model and the peptide. In our
experiments with sorbitol and the met16 peptide, we find
m ≈ −0.9 ± 0.1 kJ mol−1(mol/kg)−1.43 The interactions
between sorbitol, peptide, and water were calibrated by
adjusting the Lennard-Jones interaction between the sorbitol
beads and the peptide backbone, leaving other interactions
(namely side chain-sorbitol and water−peptide interactions) at
their default MARTINI values for P4 beads. This choice is
supported by the studies of Bolen and others, which have
shown that the major contribution to exclusion of osmolytes
from peptide surfaces stems from osmolyte-backbone inter-
actions.10,52,54,55 Another reason to use these interactions for
calibration is that backbone surface exposure changes
dramatically between unfolded and folded ensembles compared
to other moieties, thus these interactions are most strongly
affected by changes in solvent interactions (Figure S8).
To determine how sorbitol alters the peptide monomer’s

folding free energy, we evaluate the folding equilibrium
constant, Keq = exp(−ΔGfold/kT), in our simulations by
counting folded and unfolded instances according to a single
selection criterion at all sorbitol concentrations. Since we
parametrize the model according to the extent of cosolute
exclusion from the peptide surface area, we used the backbone
solvent-accessible surface area (SASA) as a relevant structural
parameter for differentiating folded from unfolded conforma-
tions. The threshold value separating folded and unfolded
SASA values was determined using several concentrations of
sorbitol (0.4, 0.65, 0.8, 1.1, and 1.5 mol/kg). The SASA
distribution curves are shown in the inset of Figure 3A.
Expectedly, as sorbitol concentrations increase the peak with
the lower SASA (representing the folded ensemble) grows and
the peak with the higher SASA is depressed. The trend
becomes even more apparent when we subtract the probability
distribution in the presence of sorbitol from the probabilities in
water, ΔP. Figure 3A shows a region where ΔP increases, and a
region where it decreases. Importantly, all curves intersect at a
single point, where ΔP ≈ 0. This value (in this case, SASA =
1360 Å2) is selected as the threshold between folded and
unfolded conformations. We suggest this computational
cosolute-perturbation method as a general way to obtain
folded/unfolded population thresholds in protein and peptide
simulations. Notably, this method requires no prior assump-
tions on the peptide or protein conformational ensemble.
The folding equilibrium constant and the related free energy

are then derived through the ratio of the number of frames that
show peptide conformations above and below the determined

threshold. We verify the convergence of the values for the
equilibrium constant by bootstrapping.56 The linear decrease in
the folding free-energy due to sorbitol,ΔΔG =ΔGfold,s−ΔGfold,w,
as a function of sorbitol concentration, Figure 3B, indicates that
the polyol CG model is indeed excluded from the peptide
surface and that the changes in preferential hydration between
folded and unfolded conformations remain constant at all
tested concentrations. The slope of ΔΔG versus sorbitol
concentration, shown in Figure 3B, represents the simulation-
obtained m-value, which closely matches the experimental one.
We also compared results from an alternative method to obtain
the m-value that relies on KB integrals to determine the
preferential interaction coefficients, as described in Section S4
of the SI. Both methods gave the same results within statistical
error. Nonbonded parameters for the bead type used for the
sorbitol model are available in the SI, appendix 3.

Solution Viscosity. To interpret the effect of sorbitol on
kinetics of aggregation in our simulations, we first establish the
viscosity of the CG sorbitol solution and compare these to
experimental values. To this aim, we performed several
simulations of different binary solution concentrations, and
the diffusive displacement of a spherical probe with a radius of
3.7 Å was measured in a 2 μs CG simulation. The diffusion
coefficient, D, was evaluated from the mean-square displace-
ment of the probe molecule using the g_msd module of the
GROMACS suite.57 This diffusion constant is then related to
the solution viscosity η through the Stokes−Einstein relation

η π= kT Dr/(6 ) (3)

where r is the probe radius. We find a surprisingly good
agreement with the experimental58 viscosity of these binary
solutions over a wide range of sorbitol concentrations, Figure
3C. We then used this viscosity value and the diffusion constant
from our simulations to calculate an effective hydrodynamic
radius of r = 16 Å for the simulated peptide. Overall, we find
that in both experiments and in CG simulations the effective
viscosity of sorbitol solutions increases by a factor of ∼1.5 in a 1
mol/kg sorbitol solution compared to water.

■ STRUCTURAL AND KINETIC ANALYSIS
Changes to Conformational Landscape. We examine

the changes to the conformational landscape of met16 induced
by sorbitol by looking at the 2D probability distribution of
backbone SASA and of Q,59 a parameter that quantifies the
amount of β-sheet-like native contacts present in the peptide,
defined by

∑ ∑
δ

=
+= = +

−Q
N e
1

(1 )i

N

j i

N
ij

r r
1 2

ij 0
(4)

Here, N is the number of residues on the peptide, r0 is the
cutoff distance for a contact (set at 6 Å), rij is the distance
between residues i and j for a given frame, and δij = 1 when
residues i and j are in contact in the β-hairpin state (shown in
Figure 2A), and δij = 0 otherwise. These two parameters (SASA
and Q) are largely orthogonal to each other, as can be seen
from the L-shaped distribution map in Figure 3D−F, giving a
good representation of the conformational landscape. While the
overall features of the distribution remain constant with
increasing sorbitol concentrations, the conformations with
high SASA and low Q are depleted at high sorbitol
concentration. This is shown more clearly in the difference
between the distributions in water and in the presence of
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sorbitol, SI Figure S7. The fact that sorbitol stabilizes or
destabilizes conformations according to their backbone SASA is
in line with our calibration and with the expected mechanism
for sorbitol action: the conformations with high SASA are
destabilized mainly due to effectively repulsive interactions
between sorbitol and peptide backbone. Thus, as sorbitol
concentrations increase, conformations are shifted even within
the unfolded ensemble from high-SASA conformations to
compact, misfolded, low-SASA conformations. We suggest that
these subtle changes to the conformational landscape
importantly contribute to the changes in aggregation kinetics
due to the presence of sorbitol, as we later discuss.
Aggregation Kinetics. All coarse-grained multipeptide

simulations of met16 aggregations consisted of 216 CG
peptides. The peptides, with random initial conformations,
were initially constrained, and the solvent was allowed to
equilibrate around them for 10 ns. The equilibrated system was
used as the starting point (t = 0), and multiple trajectories for
each condition (in water and in 1 mol/kg sorbitol) were run for
statistical significance. Complete details of the simulations’
parameters are available in the SI, section S1. The kinetics of
aggregation were followed by counting clusters in each frame
based on a minimal distance criterion (r < 6 Å) between any

two beads from different peptides. The time-resolved
probabilities of finding a peptide as a monomer, dimer, or
higher order oligomer are shown in Figure 4A, B, and C,
respectively.
In agreement with experiments of met16 aggregation,23 the

presence of sorbitol acts to slow the rate of monomer
consumption, resulting in longer aggregation lag times (see
Figure 4C inset). To further compare our simulations with the
experimental analysis,19 we fit the set of simulated kinetic
curves, including probabilities for peptides to be monomers,
dimers, or larger clusters (shown in Figure 4, panels A−C), to a
master equation that we have previously used to describe the
experimental aggregation process. This master equation uses
five rate constants, shown schematically in Figure 4F and
specified in Table 1. The details of this master equation are
given in the SI, Section S6. We then used a fitting procedure to
find rate constants that minimize the sum of squared deviations
between the analytic and simulated curves. The average values
for each rate constant are given in Table 1.
The values determined for the five kinetic constants indicate

that several of these are impacted by the presence of sorbitol in
solution. First, both monomer attachment and detachment
rates are slowed in the presence of sorbitol. However, while kon

Figure 4. Kinetics of met16 aggregation and cluster sizes in the presence of water (4 trajectories, blue) and in 1 mol/kg sorbitol solution (3
trajectories, red). Probability of finding a peptide in a monomeric state (A), as a dimer (B), or as a higher-order oligomer (C). Inset zooms in at
short times to highlight differences in lag time. (D) Total number of clusters as a function of time. (E) Average cluster size as a function of time. (F)
Scheme of the kinetic model used to analyze the results, showing from top to bottom: nucleation, monomer attachment/detachment to/from fibrils,
and fibril association and breakage.

Table 1. Kinetic Rates Obtained by Model Fits to Simulation Data and from Experimental Data

rates waterb sorbitolb simulation water/sorbitol experimental water/sorbitol19

kon (ns
−1 M−2) monomer-to-fibril attachment rate 0.7 ± 0.1 0.43 ± 0.05 1.6 4.2

kof f × 107 (ns−1 M−1) monomer-from-fibril detachment rate 400 ± 300 3 ± 1 133 7.5
kn (ns

−1 M−2) nucleation (dimerization) rate 0.44 ± 0.06 0.30 ± 0.03 1.5 1.8
ka (ns

−1 M−2) fibril-to-fibril attachment rate 0.5 ± 0.3 0.5 ± 1 1 N/Aa

kb × 107 (ns−1 M−1) fibril breakage rate 3 ± 2 2 ± 2 1.5 0.06
aNot included in experimental data fit. See SI, Section S6 for details. bErrors are standard deviations from 5 repeats of the fit starting from random
initial guesses, for each of the replica runs (20 and 15 repeats for water and sorbitol, respectively).
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is slowed by a factor of ∼1.5 (which closely matches the change
in solution viscosity in the presence of sorbitol, Figure 3C), the
detachment rate, kof f is slowed by 2 orders of magnitude, much
larger than the change in viscosity. Thus, our experimental
results indicated that the ratio of these rates, KD = kof f/kon, is
smaller in the presence of sorbitol. Yet, while in our
experiments the KD in the presence of sorbitol was smaller
than in water by a factor of 2, the simulations show a ca. 80-fold
decrease. The larger change in the presence of sorbitol found in
simulations may be a result of relatively poor sampling of
monomer detachment and is also likely affected by the strong
protein−protein interactions known for the MARTINI force
field.60,61 Moreover, peptide concentrations in our simulations
are roughly 30 times higher than in the experiments, which can
lead to differences in the kinetic scheme. Indeed, experiments
show that aggregation occurs much faster, almost instantly, for
met16 at concentrations exceeding 1 mM. Although dissocia-
tion events are relatively rare in our simulations, so that
relatively large errors should be expected in determining the
off-rate, the effect of sorbitol compared with water is apparent
and shows the same trends in simulations and experiments
(Table 1). Fibril breakage, another rare event in our
simulations, shows the opposite trend from our experimental
findings. This discrepancy may be a result of processes
involving fully formed fibrils that occur on much longer time
scales during amyloid aggregation and are not sampled in our
simulations. In line with experimental observations, we also find
that the nucleation rate, kn, calculated in simulations is reduced
in the presence of sorbitol.
An additional point where aggregation differs in water

compared to the presence of the osmolyte is in the total
number of aggregates and their sizes, shown in a representative

snapshot in Figure 1 and analyzed in Figure 4D and E. In water,
the number of peptide clusters is consistently lower than in the
presence of sorbitol. This is especially noticeable at longer
times, despite an equal probability for monomers to be part of a
cluster in the presence and absence of sorbitol (Figure 4C).
This observation is at odds with macromolecular crowding
theory, which would predict that the presence of cosolutes will
act to decrease the excluded volume taken up by the
protein.41,62,63 In our case, a push toward volume decrease
should favor the formation of a small number of large clusters.
Sorbitol, in our simulations, does the opposite and induces the
formation of more clusters with less peptides compared to
water. Importantly, while the theory of macromolecular
crowding has had success in predicting the effect of certain
crowding agents on amyloid aggregation,62,64,65 it has failed to
accurately predict important experimental cases of osmolyte
inhibition of amyloid aggregation.16,18,23 The differences seen in
the simulations in cluster size are in line with what our kinetic
model predicts: shorter nucleation times and faster monomer
association in water lead to faster aggregation and yield larger
clusters compared to sorbitol solution.

Structural Analysis of Peptides in Clusters. To link the
observed sorbitol effect on the kinetics and thermodynamics of
the aggregation process with sorbitol’s impact on peptide
structure, we compare several structural parameters in the
presence and absence of the chemical chaperon. To analyze the
conformations that appear in clusters of different sizes, we
quantified the intrastrand contact probabilities in both sorbitol
and water. Specifically, we counted the total number of contacts
for which the distance ri,j < 6 Å, where i and j are two beads
representing two amino acid backbone units, and j ≥ i + 4. We
then determined how these contacts are distributed over the

Figure 5. Peptide residue contact maps in clusters of various sizes. (A) Probability for intrapeptide contacts between residues that are at least 4
amino acids apart in sequence in water and sorbitol solution. For comparison the map on the far right represents an idealized β-hairpin contact map.
(B) Probability for interpeptide contacts. The top half of the panel shows the probabilities in the presence of water and the bottom half in the
presence of 1 mol/kg of sorbitol. The numbers represent cluster size. Maps on the far right represent idealized contact maps for parallel (head-to-
head, top) versus antiparallel (head-to-tail, bottom) alignments.
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entire trajectory for clusters of various sizes, Figure 5A. We find
that the majority of intra-peptide contacts lie on the diagonal
describing the β-hairpin form of the peptide, where residue 1 is
in contact with residue 16, 2 with 15, and so on (see scheme in
Figure 2A and 5A). Importantly, this native-like contact
probability map does not vary considerably in the presence of
sorbitol, nor does it change dramatically as clusters are formed.
To test the arrangements of peptides within clusters, the

inter-peptide contact probability was determined for various
sized clusters. A contact was defined based on the same
criterion as intrapeptide contacts. Probabilities were evaluated
as fractions of the total number of contacts in clusters of the
same size. Figure 5B shows contact probability distributions for
dimers through pentamers. In contrast to the intrapeptide
contacts, the interpeptide contact maps reveal a different cluster
arrangement in the presence and absence of sorbitol. Starting
from dimers, and becoming more pronounced as cluster size
increases, a trend toward the so-called parallel configuration is
observed in the presence of sorbitol, showing better resolved
diagonals. To contrast, in water additional antiparallel cluster
arrangements exist as well, becoming more pronounced as
cluster size increases.
From analysis of the effects of sorbitol on the monomer

conformational landscape (Figure 3D−F), we can expect a
slightly larger folded population in the presence of sorbitol. To
contrast, the folding conformational landscape for peptides in
clusters shows a higher population of the unfolded ensemble,
both in water and sorbitol solution, Figure 6A and B. These can
be quantified to give the folded peptide fraction in different
aggregate sizes, based on the same criteria for peptide folding
derived for the single (monomer) peptide, as shown in Figure
6C. We find that the transition from monomers to dimers is
accompanied by a sharp drop in peptide hairpin folded
population. This is in line with a common mechanism for
amyloid nucleation derived based on experimental observables,
whereby aggregation initiates from an unstructured (or
misfolded) conformation, which subsequently templates addi-
tional monomers into the misfolded state.1 This preference
toward unfolded peptides in dimers may be a result of an
increased surface area for unfolded monomers (the so-called
“fly-cast mechanism”)66 or alternatively can result from a “dock-
lock” mechanism.67 Once docking is achieved, the peptide can
lock into the correct template but may also be trapped in an
unstructured conformation. The extent of these states and their
lifetime would depend on solution conditions, including the

presence or absence of osmolyte. We find that in the presence
of sorbitol the folded populations remain more preserved in the
small clusters, and the trend persists even in clusters larger than
5, where the fraction of folded peptides in sorbitol is still larger
than in water, Figure 6C.
These findings provide new insight into the effects of sorbitol

on protein aggregation. The impact of osmolytes on isolated
monomers appears to be straightforward: its presence shifts the
peptide folding equilibrium toward conformations with lower
surface area (that results in a linear dependence of the folding
free energy on osmolyte concentration, Figure 3B,D−F). This
effect of sorbitol and other osmolytes on various proteins and
peptides has been observed both experimentally7,43,68−70 and in
simulations.44,71 In contrast, we find that multiprotein processes
such as oligomerization are impacted by polyols not only
through the change in protein stability but also in the changes
in physical and structural characteristics for the formed
aggregates, indicative of aggregate polymorphism.72,73 Since
the difference between sorbitol solution and pure water is
derived from the interactions of the osmolytes with the
monomeric peptide, we suggest that the effect of sorbitol on
protein complexes can be traced back to the relatively small
structural changes it induces in the monomeric peptide.
Specifically, our results suggest that the aggregation process
proceeds differently in the presence of sorbitol due to small
changes in the conformational landscape of the attaching
monomers, a process reminiscent of the previously observed
templated amyloid growth.74−76 Thus, a higher tendency
toward β-hairpin conformations in sorbitol translates to slower
nucleation and monomer attachment rates and leads to a larger
concentration of smaller aggregates that retain an overall higher
fraction of β-hairpin conformations, as compared to the same
process in water alone. We hypothesize that peptides and
proteins whose monomeric folding equilibrium constant is
more mildly affected by cosolutes (perhaps achievable through
rationally designed mutations) will show similar kinetics in
water and in the presence of cosolute containing solutions. In
addition, it will be interesting to see if denaturants such as urea
will promote more rapid, randomly structured aggregation and
also increase dissociation constants, since these solutes are
thought to increase the SASA of the unfolded state.77

Figure 6. Structural differences of monomers within clusters. Backbone SASA probability distributions in water (A) and 1 m sorbitol (B). As cluster
size increases (lighter colors) there is a shift toward unfolded conformations. The gray curve shows the SASA distribution from the simulation of a
single monomer under the same solution conditions. (C) Fraction of folded peptides versus cluster size. Error bars are standard deviation between
trajectories.
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■ CONCLUDING REMARKS

We have presented a CG model to study the effects of the
osmolyte sorbitol on the aggregation of a peptide from its initial
monomer population. Beyond conclusions concerning the
microscopic details of the aggregation process, this study
indicates that, despite the known shortcomings of coarse
graining, such as inadequately dissecting free energies into
entropy and energy, significant and otherwise hard to access
information can still be gained from thermodynamically well
calibrated CG models.
The effect of sorbitol on peptide folding was calibrated

through careful parametrization that maintained close contact
with experimental observables. The effect of sorbitol on the
peptide conformational ensemble helped us determine the
folded and unfolded states in an unbiased way. Moreover, the
resulting sorbitol and peptide models quantitatively well
reproduced the experimental effect of sorbitol on the free
energy of peptide folding. This calibrated force field was then
used to simulate the initial stages of amyloid aggregation and to
compare this kinetic process with our experimental results in
the presence and absence of sorbitol. The main conclusions
from the simulations are supported by experiments. Specifically,
we found that sorbitol drives monomers to form a larger
number of smaller clusters compared to water over the time
scales tested here. This is a result of a decrease in the net
association rate of monomers to fibrils and a decrease of net
nucleation rate in the presence of sorbitol. Further analysis of
monomers and clusters indicates that the main structural
difference in peptide aggregates in the presence of sorbitol is
the stronger propensity for β-sheet folding. This tendency
persists significantly in smaller clusters, where exposure of
peptides to the surrounding solution is high. In addition, the
presence of sorbitol increases the propensity to form parallel
interpeptide contacts, compared to water. Taken together, we
conclude that the relatively small effect of osmolytes on the
folding of a single peptide is propagated and amplified as the
monomers self-assemble into aggregates. Most prominently, the
net rate for monomer attachment is slowed down not only by
increased viscosity but also by a more selective attachment/
detachment to clusters (“templating”) seen in the presence of
sorbitol. This leads to a greater structural similarity between the
attaching monomer conformations and the templating nucleus.
It is tempting to speculate that the differences we find in
aggregates that form in the presence and absence of osmolytes,
reflected not only in their size but also in their structure and
material properties, may be important for mechanisms of health
and disease that are associated with amyloid fibrils.
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