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Radical Benzylation of Quinones via C—H Abstraction

Jordan D. Galloway, Duy N. Mai, and Ryan D. Baxter*

Department of Chemistry, Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343,

United States

ABSTRACT: Herein we report the development of a radical benzylation reaction of quinones using Selectfluor and catalytic
Ag(I) initiators. The reaction is believed to proceed via a C—H abstraction mechanism after Ag(I)-mediated reduction of
Selectfluor. This reaction occurs under mild conditions and is effective for a variety of quinones and radical precursors bearing
primary benzylic carbons. The use of pre-formed Ag(4-OMePy)NO:s as a catalyst proved effective in improving reaction
efficiency by reducing unwanted degradation pathways available to Selectfluor.

Functionalized quinones are well-established as oxi-
dants for organic and organometallic transformations, but
are also important structural motifs in biologically active
molecules.!® Even very simple quinone structures have
shown potent biological activity and have been utilized
by pharmaceutical and agrochemical industries.'¢ Spe-
cifically, benzylated quinones have demonstrated enzyme
inhibition'®, antitumor'f, anticancer'¢, and antifeedant'®
properties (Figure 1). A benzylated adduct of menadione
is responsible for the high potency and antimalarial prop-
erties of Plasmidione towards blood-stage parasites. ™
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Figure 1. Biologically active quinones bearing benzylic sub-
stitution.

Several methods are known for the synthesis of func-
tionalized quinones including palladium-catalyzed cou-
pling reactions?, alkylation/oxidation of hydroquinones
and phenols®, and direct radical functionalization.* In the
context of radical functionalizations, several methods
have been reported that utilize Minisci-type conditions
for radical functionalization of quinones, typically in-
volving pre-functionalized radical precursors and strong
oxidants.’> Oxidative radical processes leading to quinone
substitution from unfunctionalized reagents often require
air and moisture free conditions, large excess of the radi-
cal precursor, and elevated temperatures to circumvent
unfavorable radical pathways.

Previously, our group had shown that quinones and ar-
omatic heterocycles could be directly alkylated or ary-
lated via carboxylic or boronic acid radical precursors us-
ing Selectfluor and catalytic AgNO; (Figure 2A).° Others
have demonstrated that diazabicyclo radical cation SF-I,
formed after single-electron reduction or direct photolysis
of Selectfluor, is a suitable hydrogen atom transfer (HAT)
agent to generate carbon centered radicals leading to C—F
and C—C bond formation (Figure 2B).® We sought to com-
bine mechanistic features of these two protocols to de-
velop a quinone benzylation reaction that operates via C—
H abstraction from SF-I after single-electron transfer be-
tween a Ag(I) source and Selectfluor (Figure 3C).

A) Silver-Catalyzed Minisci Reactions Using Selectfluor as a Mild Oxidant

o (o]

Ag(l) catalyst, Selectfluor
1 > 1
| g R-CO,H: alkyl | TR
R-B(OH), or R-BF3; aryl or alkyl
o

o

B) Hydrogen Atom Abstraction of sp® C-H Bonds via Selectfluor

(J‘l/*‘\c' Reductant

[NJ (,144\CI C(sp®)-H 5

N or g | ——— cispdr
Direct Photolysis

Selectfluor SF-I

C) C-H Benzylation of Quinones Using Selectfluor and Methyl Arenes (This Work)

[e] o
(o}

Figure 2. Selectfluor as an oxidant and/or HAT precursor.

Preliminary studies using p-xylene as a radical precur-
sor showed that benzoquinone could be directly alkylated
in moderate yield using a AgNOs/Selectfluor reagent sys-
tem (Table 1, entry 1). In our previous studies on radical
fluorination via C—H abstraction, we found that pyridine
additives lowered the onset oxidation potential of Ag(I)
to facilitate single-electron transfer to Selectfluor.’



Guided by those results, we examined the effect of pyri-
dine additives on the benzylation reaction. Interestingly,
although one equivalent of 4-methoxypyridine had a del-
eterious effect on the reaction (Table 1, entry 2); catalytic
amounts led to a slight increase in conversion (Table 1,
entry 3). Because the synthesis of Ag(I)[pyridine] salts is
straightforward®, we examined their efficacy as catalysts
for the benzylation reaction. A series of conditions were
screened, and we discovered that 20 mol % of Ag(4-
OMePy),NO3 was optimum to produce 1 in good yield
(73%, Table 1, entry 4). Catalysts with different pyridines
led to diminished conversion (Table 1, entries 5 and 6),
suggesting the electron-rich nature of 4-methoxypyridine
was important for electron transfer. Interestingly, alt-
hough a control reaction without Ag(I) yielded no product
(Table 1, entry 7), one equivalent of 4-methoxypyridine
was capable of promoting radical alkylation without a
metal initiator (Table 1, entry 8), suggesting that electron
transfer between the pyridine and Selectfluor was occur-
ring.® Reaction with the standard oxidant for Minisci re-
actions, (NH4)2S>0gs, led to poor conversion and a mixture
of benzylated products (Table 1, entry 9).

[¢] Me [e]
2 equiv. Selectfluor
ey Me
conditions ‘ O
+
DCE / H,0 (1:1), 50 °C
24 h
[e] Me [e]
1 equiv. 10 equiv. 1
entry reaction conditions Yield of 12
1 20 mol % AgNO; 49%
2 20 mol % AgNO3, 1 equiv. 4-methoxypyridine 32%
3 20 mol % AgNO3;, 40 mol % 4-methoxypyridine 60%
(4 20 mol % Ag(4-OMePy),NO; 73% (71%))
5 20 mol % Ag(Py),NO3 62%
6 20 mol % Ag(4-t-BuPy),NO; 47%
7 no Ag(l) no reaction
8 no Ag(l), 1 equiv. 4-methoxypyridine 17%
9 (NH,4)2S,0g instead of Selectfluor 38% + 14% Bis

Table 1. Optimization of quinone functionalization. Reac-
tion conditions: 1,4-benzoquinone (0.2 mmol), p-xylene (2.0
mmol), Selectfluor (0.4 mmol), Ag(4-OMePy).NO; (0.04
mmol), 2 mL of DCE/H20 (1:1). * "H-NMR yields to 1,3,5-
trimethoxybenzene, values in parentheses indicate isolated
yield.

With the optimized conditions established, we exam-
ined the scope of the benzylation reaction with a variety
of quinones and methyl arene reaction partners (Figure 3).
Para substituted toluenes with electron donating groups
(2-3) benzylated benzoquinone in moderate to good
yield. Ortho-substituted arenes with methyl (4) or a phe-
nyl group (5) furnished product in moderate to poor yield.
Meta-methylated (6) and tetramethylated (7) arenes were
also effective partners in generating desired products.
Electron-withdrawing methylarenes were ineffective un-
der optimized conditions, resulting in the isolation of un-
reacted benzoquinone. A variety of quinones were
screened to determine the scope of electrophiles suitable
for this reaction. Benzylated 1,4-benzoquinone (8) was

synthesized in moderate yield. It is interesting to note that
using solvent quantities of the radical precursor results in
largely similar reaction conversions. Both methylated (9—
10) and halogenated (11-12) benzoquinones were effec-
tive coupling partners and resulted in moderate yields of
benzylated products with no bis-benzylated products ob-
served. Finally, functionalized naphthaquinone (13) and
associated analogs such as juglone (14) and menadione
(15) can also be accessed. Efforts to extend this method
to heterocyclic compounds or other C—H radical precur-

sors*® resulted in poor yields.
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Figure 3. Scope of quinone benzylation. Yields refer to
chromatographically pure compounds. *Toluene was used
instead of DCE as organic solvent.

To better understand the effect of 4-methoxypyridine as
a ligand for Ag(I), we tracked the concentration of Select-
fluor by '’F-NMR over the course of a typical experiment.
Due to the biphasic nature of the reaction, in situ reaction
monitoring posed a challenge. Instead, small aliquots
were removed from the aqueous phase of the reaction to
determine Selectfluor concentration against an external
standard over the course of 24 hours (see Supporting In-
formation for details). Entry 2 from Table 1 suggested that
excess 4-methoxypyridine had a negative effect on reac-
tion conversion, and previous work in our group had es-
tablished that electron-rich pyridines can directly con-
sume Selectfluor in an unproductive manner, an observa-
tion that is now extended to this biphasic solvent system.
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Figure 4. "YF-NMR monitoring of the consumption of Select-
fluor (1.0 mmol) with either (A) 0.1 mmol of AgNOs, (B)
0.2 mmol of 4-methoxypyridine, or (C) 0.1 mmol of Ag(4-
OMePy)2NOs. Reaction conditions: Selectfluor (1.0 mmol)
in DCE/H20 (4 mL, 1:1) at 50 °C for up to 24 h. Using a
glass microsyringe, 200 pL aliquots were taken from the
aqueous phase at specified time points. Conversions were
determined by '?F-NMR using trifluorotoluene as an exter-
nal standard.

We were interested, however, in comparing the use of
AgNO3 and catalytic 4-methoxypyridine to Ag(4-
OMePy)2NOs to establish the benefit of the pre-formed
catalyst. A catalytic amount of AgNOs3 consumed approx-
imately 80% of Selectfluor within 24 hours, confirming
that a nitrogen additive is not required for the Ag(I)/(1I)
redox cycle under these conditions (Figure 4A). A cata-
lytic amount of 4-methoxypyridine consumes Selectfluor
in an apparent 1:1 stoichiometry with an initial rate that is
on par with the AgNOs-mediated reaction (Figure 4B).
Under these conditions only trace amounts of product are
formed, confirming that free 4-methoxypyridine has a
deleterious effect on the desired transformation even in
catalytic quantities. Finally, reaction with pre-formed
Ag(4-OMePy)>NOs produces the highest overall reaction
rate for consumption of Selectfluor, while providing the
desired product in the highest overall conversion (Figure
4C). These data suggest that the pre-formed catalyst cir-
cumvents unfavorable interactions between 4-methoxy-
pyridine and Selectfluor, presumably because strong as-
sociation to Ag(I) precludes the occurrence of free pyri-
dine in solution.
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Figure 5. Proposed mechanism for quinone benzylation.

A plausible mechanism for the benzylation of quinone
is shown in Figure 5. Single-electron transfer between
Ag(4-OMePy),NOs and Selectfluor generates SF-1 and
the Ag(Il) complex with concomitant generation of fluo-
ride anion (Figure 5A). Hydrogen atom abstraction of a

methylarene via SF-I leads to a nucleophilic benzyl radi-
cal that is trapped by an electrophilic quinone substrate.
The resulting radical intermediate is then oxidized, either
by Selectfluor or Ag(Il), and deprotonated to produce the
expected C—H benzylated product (Figure 5B).

In summary, we have developed a robust catalyst sys-
tem for generating benzylic radicals via C—H abstraction,
and combining these radicals with various electrophilic
quinones. A pre-formed Ag(l)/pyridine catalyst was
found to be optimum for reducing Selectfluor via single-
electron transfer to generate diazabicyclo radical cation
SF-I as hydrogen atom transfer agent. The quinone ben-
zylation reaction is simple to perform and operates under
mild reaction conditions without pre-functionalized sub-
strates. Efforts are ongoing to identify new catalyst sys-
tems to make the reaction compatible with alternative rad-
ical precursors or electrophilic partners such as aromatic
heterocycles.

General Considerations

Reagents and solvents were purchased at the highest commer-
cial quality and used without purification. Yields refer to chro-
matographically and spectroscopically (‘H NMR, *C NMR, "°F
NMR) homogenous material, unless otherwise noted. Reactions
were monitored by GCMS (Agilent Technologies 5975 Series
MSD GC MYS) and thin-layer chromatography using 0.25 mm
E. Merck silica gel plates (60F-254) using UV light. NMR
spectra were recorded on a Bruker-INOVA 400 MHz or 500
MHz spectrometer and calibrated using residual undeuterated
solvent as an internal reference (CDCl; — 'H NMR 7.26 ppm,
BC NMR 77.16 ppm). The following abbreviations were used
to explain multiplicities (s — singlet, d — doublet, t — triplet, q —
quartet, m — multiplet).

General Reaction Procedures

General Procedure

The threads of a 3 mL borosilicate scintillation vial were thor-
oughly taped with Teflon tape. To this vial containing a stir bar
was added quinone (0.2 mmol, 1 equiv), benzylic arene (2.0
mmol, 10 equiv) and Selectfluor (141.7 mg, 0.4 mmol, 2 equiv).
Dichloroethane (1 mL) and H,O (1 mL) were then added and
stirred for approximately 1 min at room temperature. A solid
amount of Ag(4-OMe pyridine),NO; (15.5 mg, 0.04 mmol, 20
mol %)was added in one portion. The reaction was capped with
a teflon screw cap and rubber septum (24/40). The reaction was
heated to 50 °C until reaction was completed as judged by
GCMS (up to 24 hours).

Upon completion, the reaction was diluted with ethyl acetate (1
mL) and transferred to a test tube containing H>O (3 mL). The
aqueous phase was extracted with ethyl acetate (3 x 3 mL) and
the combined organic layers were dried over MgSQOs, filtered
and carefully concentrated in vacuo. The crude material was pu-
rified by silica gel chromatography (ethyl acetate:hexanes) to
yield the desired product.

Experimental Procedures and Characterization Data



General Conditions for the synthesis of bis(pyridine) silver
complexes

To a round bottom containing a stir bar was added AgNO; (1 —
3.0 mmol) and pyridine (2.1 equiv.) which were mixed in
MeCN (0.15M) and stirred at room temperature overnight pro-
tected from light. The reaction mixture was filtered through
Celite, and the solvent removed from the filtrate under vacuum.
The resulting residue was washed with diethyl ether.

bis(pyridine)silver(I) nitrate complex (Ag(Py):NO;). The
general procedure was employed using AgNO; (169 mg, 1.0
mmol) and pyridine (170 uL, 2.1 mmol). The reaction afforded
Ag(Py):NO;(259.0 mg, 79% yield) as a white solid. 'H NMR
(400 MHz, CDsCN): 8.62 —8.54 (m,2H),7.89 (tt,J=7.7,1.7
Hz, 1H),7.48 (ddd,J=7.7,4.7, 1.4 Hz, 2H). *C NMR (100
MHz, CD;CN): 151.8, 1389, 125.7. HRMS (ESI-TOF):
caled for Ci,H4sAgN>O, [M+H]" 264.9889 found 264.9878.

bis(4-(tert-butyl)pyridine)silver(I) nitrate complex (Ag(4-
tBuPy);NOs). The general procedure was employed using
AgNO; (169 mg, 1.0 mmol) and 4-tert-Butylpyridine (308 pL,
2.1 mmol). The reaction afforded Ag(4-rBuPy),NO3 (380.6 mg,
86% yield) as a white solid. '"H NMR (400 MHz, CD;CN): 8.49
(dd,J=49,1.6 Hz,2H),7.50 (dd,J =49, 1.7 Hz,2H), 1.31
(s, 9H). BC NMR (100 MHz, CD;CN): 163.3, 151.7, 122.8,
35.6, 30.4. HRMS (ESI-TOF): calcd for C;;HsAgN,O,
[M+H]" 377.1141 found 377.1126.

bis(4-methoxypyridine)silver(I) nitrate complex
(Ag(OMePy);NO3). To a round bottom containing a stir bar
was added AgNO; (510 mg, 3.0 mmol) and 4-methoxypyridine
(640 uL, 6.3 mmol) which were mixed in MeCN (20 mL) and
stirred at room temperature overnight protected from light. The
reaction mixture was filtered through Celite, and the solvent re-
moved from the filtrate under vacuum. The resulting residue
was washed with diethyl ether to afford Ag(OMePy);NO;
(1,094.5 mg, 94% yield) as a white solid. "H NMR (500 MHz,
CDsCN): 840 (dd,J=5.1,1.5Hz,2H),7.02 (dd,J=5.1,1.5
Hz, 2H), 3.88 (s, 3H). *C NMR (125 MHz, CD;CN): 167.7,
153.3, 1118, 56.5. HRMS (ESI-TOF): caled for
Ci,H4AgN,O, [M+H]" 325.0106 found 325.0101.

Figure 4 Compounds (1-15)

2-(4-methylbenzyl)cyclohexa-2,5-diene-1,4-dione (1). The
general procedure was employed using 1,4-benzoquinone (22
mg, 0.2 mmol) and p-xylene (247 pL, 2.0 mmol). The reaction
afforded 1 (30.1 mg, 71% yield) as a yellow oil. "H NMR (500
MHz, CDCl;): 7.13 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 8.0 Hz,
2H), 6.76 (d, J=10.1 Hz, 1H), 6.69 (dd, J = 10.1, 2.5 Hz, 1H),
6.38-6.35 (m, 1H), 3.70 (s, 2H), 2.33 (s,3H). *C NMR (125
MHz, CDCl): 187.9, 187.4, 149.0, 136.8, 136.4, 133.3, 133.3,
129.7, 129.4, 349, 21.2. HRMS (ESI-TOF): calcd for
CisH120, [M+H]" 213.0910 found 213.0901.

2-(4-methoxybenzyl)cyclohexa-2,5-diene-1,4-dione (2). The
general procedure was employed using 1,4-benzoquinone (22
mg, 0.2 mmol) and 4-methylanisole (252 pL, 2.0 mmol). The
reaction afforded 2 (16.3 mg, 36% yield) as a yellow oil. '"H
NMR (500 MHz, CDCl;): 7.13-7.08 (m, 2H), 6.88-6.83 (m,
2H), 6.76 (d, J=10.1 Hz, 1H), 6.70 (dd, J = 10.1, 2.5 Hz, 1H),
6.36 (dd, J=4.1, 1.6 Hz, 1H), 3.79 (s, 3H), 3.68 (d, /= 1.4 Hz,

2H). ®C NMR (125 MHz, CDCl;): 188.0, 187.5, 158.8, 149.2,
136.8, 136.5, 133.3, 130.6, 128.3, 114.4, 55.4, 34.5. HRMS
(ESI-TOF): calecd for CisH;205 [M+H]" 229.0859 found
229.0853.

4-((3,6-dioxocyclohexa-1,4-dien-1-yl)methyl)phenyl acetate
(3). The general procedure was employed using 1,4-benzoqui-
none (22 mg, 0.2 mmol) and p-tolyl acetate (287 pL, 2.0 mmol).
The reaction afforded 3 (28.6 mg, 56% yield) as a pale yellow
oil. '"H NMR (500 MHz, CDCl3): 7.17 (d,J= 8.0 Hz, 2H), 7.01
(d,J=7.9Hz, 2H), 6.74 (d,J=10.1 Hz, 1H), 6.68 (dd, J=10.1,
1.1 Hz, 1H), 3.70 (s, 2H), 2.26 (s, 3H). *C NMR (125 MHz,
CDCly): 187.7,187.2,169.6, 149.8, 148.4, 136.8, 136.5, 134.0,
133.4, 130.5, 122.1, 34.8, 21.3. HRMS (ESI-TOF): calcd for
CisH1204 [M+H]" 257.0808 found 257.0798.

2-(2-methylbenzyl)cyclohexa-2,5-diene-1,4-dione (4). The
general procedure was employed using 1,4-benzoquinone (22
mg, 0.2 mmol) and o-xylene (241 uL, 0.4 mmol). The reaction
afforded 5 (24.3 mg, 57% yield) as a yellow oil. "H NMR (500
MHz, CDCl;): 7.22-7.14 (m, 3H), 7.12-7.06 (m, 1H), 6.81 (d,
J=10.1 Hz, 1H), 6.71 (dd, J=10.1, 2.6 Hz, 1H), 6.11 (dd, J =
4.4, 2.0 Hz, 1H), 3.75 (d, J = 1.9 Hz, 2H), 2.21 (s, 3H). BC
NMR (125 MHz, CDCl3): 187.8, 187.5, 148.4, 136.8, 136.7,
136.5, 134.4, 133.1, 130.8, 130.5, 127.6, 126.6, 32.7, 19.5.
HRMS (ESI-TOF): calcd for Ci4sH;20, [M+H]" 213.0910
found 213.0902.

2-([1,1'-biphenyl]-2-ylmethyl)cyclohexa-2,5-diene-1,4-di-
one (5). The general procedure was employed using 1,4-benzo-
quinone (22 mg, 0.2 mmol) and 2-methylbiphenyl (333 pL, 2.0
mmol). The reaction afforded 6 (5.9 mg, 11% yield) as a yellow
solid. "H NMR (500 MHz, CDCl3): 7.39-7.19 (m, 9H), 6.67 (d,
J=10.1 Hz, 1H), 6.63 (dd, J=10.1, 2.4 Hz, 1H), 6.05 (dd, J =
4.1,1.9 Hz, 1H), 3.76 (d, J= 1.7 Hz, 2H). *C NMR (125 MHz,
CDCly): 187.8, 187.0, 149.0, 142.8, 141.2, 136.7, 136.3, 133.9,
133.7, 130.7, 130.7, 129.0, 128.5, 128.0, 127.4, 127.4, 32.7.
HRMS (ESI-TOF): calcd for CioHis0, [M+H]" 275.1067
found 275.1062.

2-(3-methylbenzyl)cyclohexa-2,5-diene-1,4-dione (6). The
general procedure was employed using 1,4-benzoquinone (22
mg, 0.2 mmol) and m-xylene (247 uL, 2.0 mmol). The reaction
afforded 7 (12.2 mg, 29% yield) as a yellow oil. "H NMR (500
MHz, CDCls): 7.21 (t,J=17.5 Hz, 1H), 7.06 (t, J=7.0 Hz, 1H),
7.01-6.96 (m, J = 8.2 Hz, 2H), 6.77 (dd, J = 10.0, 4.9 Hz, 1H),
6.70 (dd, J=10.1, 2.5 Hz, 1H), 6.37 (dt, J= 2.4, 1.6 Hz, 1H),
3.70 (d, J = 1.3 Hz, 2H), 2.33 (s, 3H). *C NMR (125 MHz,
CDCly): 187.9, 187.4, 148.9, 138.7, 136.8, 136.5, 136.4, 133.4,
130.2, 128.9, 127.9, 126.5, 35.2, 21.5. HRMS (ESI-TOF):
caled for CisHi2O, [M+H]" 213.0910 found 213.0907.

2-(2,4,5-trimethylbenzyl)cyclohexa-2,5-diene-1,4-dione (7).
The general procedure was employed using 1,4-benzoquinone
(22 mg, 0.2 mmol) and 3'-methylacetophenone (266 uL, 2.0
mmol). The reaction afforded 8 (13.6 mg, 28% yield) as a col-
orless oils. "TH NMR (500 MHz, CDCl;): 6.96 (s, 1H), 6.84 (s,
1H), 6.79 (d, J=10.1 Hz, 1H), 6.70 (dd, J = 10.1, 2.5 Hz, 1H),
6.12 (d,J=1.9 Hz, 1H), 3.68 (s, 2H), 2.22 (s, 3H), 2.20 (s, 3H),
2.14 (s, 3H). ®C NMR (125 MHz, CDCl3): & 187.9, 187.6,
148.8, 136.8, 136.5, 135.7, 134.6, 133.8, 133.1, 132.2, 131.8,
131.5, 32.3, 19.4, 19.3, 18.9. HRMS (ESI-TOF): calcd for
Ci¢H170, [M+H]" 241.1223 found 241.1216.



2-benzylcyclohexa-2,5-diene-1,4-dione (8). The general pro-
cedure was employed using 1,4-benzoquinone (22 mg, 0.2
mmol) and toluene (213 pL, 2.0 mmol). The reaction afforded
9 (19.8 mg, 46% yield) as a yellow oil. The data matches those
previously reported.** "H NMR (400 MHz, CDCl3): 7.33 (t,J =
7.4 Hz, 2H), 7.26 (t,J = 7.2 Hz, 1H), 7.19 (d, J= 7.3 Hz, 2H),
6.77 (t, J= 7.5 Hz, 1H), 6.71 (dd, J = 10.1, 2.2 Hz, 1H), 6.37
(d, J=1.5Hz, 1H), 3.75 (s, 2H).

2-benzyl-3,5-dimethylcyclohexa-2,5-diene-1,4-dione ).
The general procedure was employed using 2,6-dimethylbenzo-
quinone (27 mg, 0.2 mmol) and toluene (213 pL, 2.0 mmol).
The reaction afforded 10 (22.2 mg, 49% yield) as a yellow oil.
'"H NMR (500 MHz, CDCl;): 7.29-7.23 (m, 2H), 7.21-7.15 (m,
3H), 6.59 (dd, J = 3.0, 1.4 Hz, 1H), 3.86 (s, 2H), 2.10 (s, 3H),
2.05 (d, J = 1.6 Hz, 3H). *C NMR (125 MHz, CDCl;): 188.5,
187.3, 145.6, 142.9, 141.9, 138.2, 133.2, 128.7, 128.7, 126.5,
319, 16.1, 12.9. HRMS (ESI-TOF): caled for C;sH4O:
[M+H]" 227.1067found 227.1055.

3-benzyl-2,5-dimethylcyclohexa-2,5-diene-1,4-dione  (10).
The general procedure was employed using 2,5-dimethyl-1,4-
benzoquinone (27 mg, 0.2 mmol) and toluene (213 uL, 2.0
mmol). The reaction afforded 11 (20.4 mg, 45% yield) as a yel-
low oil. '"H NMR (400 MHz, CDCl3): 7.29-7.23 (m, 2H), 7.21-
7.15 (m, 3H), 6.58 (s, 1H), 3.87 (s, 2H), 2.09 (s, 3H), 2.03 (s,
3H)."*C NMR (100 MHz, CDCl;): 188.0, 187.7, 145.5, 143.1,
141.8, 138.2, 133.3, 128.8, 128.7, 126.6, 32.2, 16.1, 12.6.
HRMS (ESI-TOF): calcd for CisHi40, [M+H]" 227.1067
found 227.1067.

2-benzyl-3,5-dichlorocyclohexa-2,5-diene-1,4-dione  (11).
The general procedure was employed using 2,6-dichloro-1,4-
benzoquinone (35 mg, 0.2 mmol) and toluene (213 uL, 2.0
mmol). The reaction afforded 12 (23.9 mg, 45% yield) as a yel-
low solid. The data matches those previously reported.* 'H
NMR (400 MHz, CDCl3): 7.31-7.19 (m, 5H), 7.03 (s, 1H), 4.01
(s, 2H).

3-benzyl-2,5-dichlorocyclohexa-2,5-diene-1,4-dione  (12).
The general procedure was employed using 2,5-dichloro-1,4-
benzoquinone (35 mg, 0.2 mmol) and toluene (213 uL, 2.0
mmol). The reaction afforded 13 (27.7 mg, 52% yield) as a yel-
low solid. "TH NMR (500 MHz, CDCl3): 7.35-7.21 (m, 5H),
7.10 (s, J = 3.3 Hz, 1H), 4.07 (s, 2H). *C NMR (125 MHz,
CDCly): 177.5, 177.5, 144.4, 144.3, 141.6, 136.0, 133.0, 129.4,
129.0, 127.3, 34.1. HRMS (ESI-TOF): calcd for C;3HsCLO»
[M+H]" 266.9974 found 266.9972.

2-benzylnaphthalene-1,4-dione (13). The general procedure
was employed using 1,4-naphthoquinone (32 mg, 0.2 mmol)
and toluene (213 puL, 2.0 mmol). The reaction afforded 14(21.0
mg, 42% yield) as a yellow solid. The data matches those pre-
viously reported.** 'H NMR (500 MHz, CDCl;): 8.17-7.98 (m,
2H), 7.80-7.66 (m, 2H), 7.37-7.30 (m, 2H), 7.29-7.22 (m, 3H),
6.61 (s, 1H), 3.90 (s, 1H).

2-benzyl-5-hydroxynaphthalene-1,4-dione (14-C2) and 2-
benzyl-8-hydroxynaphthalene-1,4-dione (14-C3). The gen-
eral procedure was employed using 5-hydroxy-1,4-naphthoqui-
none (35 mg, 0.2 mmol) and toluene (213 pL, 2.0 mmol). The
regioisomeric ratio of C2:C3 was determined to be 1:1.1 by
crude '"H NMR. The reaction afforded 15-C2 (6.0 mg, 11%

yield) and 15-C3 (6.1 mg, 11% yield) as yellow solids. NMR
data for 14-C2 'H NMR (500 MHz, CDCl3): 11.92 (s, 1H),
7.67-7.58 (m, 2H), 7.34 (t, J=7.4 Hz, 2H), 7.30-7.21 (m, 4H),
6.55(t,J=1.5Hz, 1H), 3.89 (d,J= 1.2 Hz, 2H). BC NMR (125
MHz, CDCl): 190.5, 184.4, 161.4, 152.5, 136.6, 136.4, 135.6,
132.2, 129.6, 129.1, 127.2, 124.4, 119.6, 115.1, 35.9. HRMS
(ESI-TOF): caled for C7H1205 [M+H]" 265.0859 found
265.0853 NMR data for 14-C3 "H NMR (500 MHz, CDCl5):
12.04 (s, 1H), 7.63-7.56 (m, 2H), 7.37-7.32 (m, 2H), 7.30-7.23
(m, 4H), 6.59 (t, J = 1.5 Hz, 1H), 3.89 (d, J = 1.1 Hz, 2H). BC
NMR (125 MHz, CDCls): 190.4, 184.5, 161.8, 150.9, 136.7,
136.7, 136.5, 132.3, 129.5, 129.1, 127.3, 124.5, 119.0, 115.3,
35.4. HRMS (ESI-TOF): calcd for Ci7H;,05 [M+H]" 265.0859
found 265.0849.

2-benzyl-3-methylnaphthalene-1,4-dione (15). The general
procedure was employed using 2-methyl-1,4-naphthoquinone
(34 mg, 0.2 mmol) and toluene (213 pL, 2.0 mmol). The reac-
tion afforded 16 (11.1 mg, 21% yield) as a yellow solid. The
data matches those previously reported.>” "TH NMR (500 MHz,
CDCl): 8.12-8.06 (m, 2H), 7.73-7.68 (m, 2H), 7.30-7.16 (m,
SH), 4.04 (s, 2H), 2.25 (s, 3H).
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S2

*F-NMR studies
Representative Experimental Procedure for >F-NMR Data

The threads of a 4 mL borosilicate scintillation vial were thoroughly taped with Teflon tape. To this vial containing a stir bar was added
Selectfluor® (354 mg, 1.0 mmol) and AgNO; (17.0 mg, .10 mmol). Dichloroethane (2 mL) and H,0 (2 mL) were then added to the vial. The
solution was allowed to stir at 50 °C for 24 h. Using a glass microsyringe, 200 uL aliquots were taken from the aqueous phase at specified time
points and diluted with 400 pL of D,0. Decrease in Selectfluor concentration were determined by **F-NMR. All **F-NMR experiments were
compared to a,a,a-Trifluorotoluene as standard which was added to the NMR tube in a sealed capillary tube. All data represented in Figure 4A-C
were acquired in an analogous fashion.
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