Theoretical chemistry compliments laboratory-based research by investigating the fundamental principles underlying chemical processes. Computational methods are valuable tools for predicting a wide range of chemical properties, including thermochemistry, reaction mechanisms, chemical kinetics and spectroscopic quantities, allowing high-throughput screening of compounds.

The Colvin group uses computational approaches to study complex biochemical problems at the molecular level.

The Isborn group is using and improving existing quantum mechanical and classical methodologies to more accurately model solvation and electronic excitation.

The Hratchian group develops and applies new computational models for studying chemical reactivity, especially in the area of transition metal catalysis.

The Pribram-Jones group analyzes temperature effects, time dependence, and ensemble behavior in existing and new methods for simulating atomic excitations, high entropy alloys, and warm dense matter.

The Shi group develops and applies multi-scale modeling methods to understand the structure, dynamics and spectroscopy of complex condensed-phase molecular systems.

- T. Zuehlsdorff and C. M. Isborn, Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution (Editor's Pick), J. Chem. Phys. 148, 024110 (2018)
- Yang, Z.-Y.; Pribram-Jones, A.; Burke, K.; Ullrich, C.A. Direct extraction of excitation energies from ensemble density-functional theory. Phys. Rev. Lett. 119, 033003 (2017)
- Kaufman, J.L.; Pomrehn, G.S.; Pribram-Jones, A.; Mahjoub, R.; Ferry, M.; Laws, K.J.; and Bassman,

L. Stacking fault energies of non-dilute binary alloys using special quasirandom structures. Phys. Rev. B, 95 , 094112 (2017) - M. R. Provorse Long and C. M. Isborn, Combining explicit quantum mechanical solvent with a polarizable continuum model, J. Phys. Chem. B. 121, 10105 (2017)
- A. Pribram-Jones, P. E. Grabowski, and K. Burke, Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem, Phys. Rev. Lett. 116, 233001 (2016)
- C. K. Lee, L. Shi and A. P. Willard, A Model of Charge-Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects, J. Phys. Chem. Lett. 7, 2246 (2016)
- L. Shi and J. L. Skinner, Mixed Quantum/Classical Approach to OH-Stretch Inelastic Incoherent Neutron Scattering Spectroscopy for Ambient and Supercooled Liquid Water and Ice Ih. J. Chem. Phys. 143, 014503 (2015)
- M. R. Provorse, B. F. Habenicht, C. M. Isborn. Peak-Shifting in Real-Time Time-Dependent Density-Functional Theory. J. Chem. Theory Comp. 11, 4791 (2015)
- L. M. Thompson and H. P. Hratchian. Spin projection with double hybrid density functional theory. J. Chem. Phys., 141, 034108 (2014)
- K. Garrett, X. A. Sosa Vazquez, S. B. Egri, J. Wilmer, L. E. Johnson and C. M. Isborn. Optimum Exchange for Calculation of Excitation Energies and Hyperpolarizabilities of Organic Electro-Optic Chromophores. J. Chem. Theory Comput. 10, 3821-3831 (2014)
- H. P. Hratchian. An efficient analytic gradient theory for approximate spin projection methods. J. Chem. Phys. 138, 101101 (2013)
- H. P. Hratchian and E. Kraka. Improved predictor-corrector integrators for evaluating reaction path curvature. J. Chem. Theory Comput. 9, 1481-1488 (2013)
- Christine M. Isborn, Brendan D. Mar, Basile F. E. Curchod, Ivano Tavernelli, and Todd J. Martínez. The Charge Transfer Problem in Density Functional Theory Calculations of Aqueously Solvated Molecules. J. Phys. Chem. B, 117, 12189–12201 (2013)
- C. M. Isborn, A. W. Götz, M. A. Clark, R. C. Walker, and T. J. Martínez. Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein. J. Chem. Theory Comput.,
*8*, pp 5092–5106 (2012)