Graduate courses in Chemistry

Course	Title, units	Description
number		*
CHEM	Advanced Organic	Logical approaches to designing syntheses of target organic
200	Synthesis [3]	compounds. Introduction to retrosynthetic analyses and
		background on the reactions needed to achieve common
		syntheses; protecting groups and stereoselective
		methodologies. Classic syntheses are discussed in the
		context of modern methods. Introduction to literature
		search tools, a practical estimate of the reliability of
		published protocols, and references on chemical
CHEM	Organia and	purification.
CHEM 201	Organic and	arbital theory are used to explain reactivity, product
201	Digationietallic Deaction Machanisms	distributions the stability of intermediates and transition
	[3]	state structure. Floments of computational chemistry
	[0]	kinetic methods of interrogation linear free energy
		relationships, kinetic isotope effects, and other methods for
		empirically constructing plausible reaction mechanisms
CHEM	Bioorganic Chemistry	The molecular basis of biological processes. Methods by
202	[3]	which enzymes catalyze organic reactions; experimental
		methods by which the mechanisms of enzyme-catalyzed
		reactions are elucidated; chemistry of disease states and
		drug action.
CHEM	Molecular and Solid	Theory and practical application of molecular quantum
212	State Quantum	mechanics. Schrödinger equation and matrix
	Chemistry [3]	representations of quantum mechanics; simple exactly
		solvable model problems; calculation of observable
		properties; vibrational and electronic wave functions;
		approximation methods; quantum mechanics of
CHEM	Statistical	spectroscopy.
21 <i>/</i>	Thermodynamics [3]	applications of equilibrium statistical mechanics to
214	Thermouynamics [5]	interacting and noninteracting systems and the connection
		to classical thermodynamics, numerical simulation
		techniques, and an introduction to topics in nonequilibrium
		statistical mechanics.
CHEM	Chemical Kinetics [3]	The rates and mechanisms of elementary reactions,
215		unimolecular reactions, reactions in the gas phase, in
		solutions and on surfaces. Energy and charge transfer
		phenomena. Kinetics of surface and enzyme catalysis.
		Kinetic modeling of multistep reactions.
CHEM	Molecular Electronic	Modern theoretical methods, algorithms, and
225	Structure [3]	computational tools for understanding the energetics and
		properties of molecules. This includes molecular
		initia based approaches. Electronic structure methods and
		as Hartroo-Fock density functional theory couples cluster
		and configuration interaction will be introduced

CHEM	Molecular	Time dependent quantum machanises interaction of
		Time-dependent quantum mechanics; interaction of
231	Spectroscopy [3]	radiation with matter; electronic spectra of atoms and
		molecules; vibrational, rotational, and Raman spectra;
		magnetic resonance spectroscopy; X-ray, neutron, and
		electron diffraction. Modern experimental and theoretical
		methods in spectroscopy.
CHEM	Introduction to	Teaches the tools and principles of scientific computing,
260	Scientific Computing	covering the Linux operating system, programming tools
	[3]	and editors, shell scripting, data analysis using R, and
		scientific programming using interpreted and compiled
		languages. Course involves interactive lecture/laboratory
		sessions where students will gain experience doing scientific
		computing on both local and remote computers.
CHEM	Academic Writing in	Designed to increase the writing proficiency of graduate
270	Graduate Studies [2]	students, with a focus on strategies for reading critically.
		organizing and developing thoughts, choosing appropriate
		vocabulary, and generating and revising writing in a given
		scientific field. Topics address scientific disciplines. Projects
		may include writing abstracts, research reports, literature
		reviews, posters, and grant proposals.
CHEM	Molecular Dynamics	Uses lectures and laboratory exercises to teach the practice
281	and Biomolecular	of biomolecular modeling. Topics include classical
	Simulation [4]	molecular dynamics, molecular mechanics and
		visualization. The laboratories involve simulations of
		systems including water. DNA and proteins. The course
		includes two projects for the students to apply molecular
		simulation to their graduate research.
CHEM	Current Topics in	Exploration of current research directions, problems, and
290	Physics and	techniques in molecular and materials chemistry, physics.
	Chemistry [3]	and engineering. Course format emphasizes student-led
	j i j	presentation, analysis, and discussion of reading
		assignments from the current and recent scientific
		literature. Topics are determined by the instructor and
		change each semester.
CHEM	Physics and	Graduate seminar in physics and chemistry. S/U grading
291	Chemistry Seminar [1]	only.
CHEM	Graduate Research [1	Supervised research. <i>Permission of instructor required.</i>
295	- 15]	S/U grading only.
CHEM	Directed Group Study	Group project under faculty supervision. <i>Permission of</i>
298	[1 - 6]	instructor required. S/U grading only.
CHEM	Directed Independent	Independent project under faculty supervision. <i>Permission</i>
299	Study [1 - 6]	of instructor required. S/U grading only.

Graduate courses in other disciplines

PHYS	Electrodynamics	Introduction to electrodynamics. Electrostatics including
210	and Optics I [4]	Poisson and Laplace equations, Green's theorem and different
	-	boundary value problems, polarizability, susceptibility and
		dielectric media. Magnetostatics, Maxwell's equations, plane
		electromagnetic waves, polarization of light, electromagnetic
		radiation in different media.
PHYS	Condensed Matter	An introduction to the physics of materials designed for graduate
241	Physics [4]	students in physics or chemistry. The course will cover
		traditional solid state physics and include topics in soft matter.
		This class will examine the relationship between microscopic
		structure and bulk properties.
QSB	Graduate Level	The overall objective of QSB 202 is to teach students
202	Biochemistry [3]	fundamental principles and concepts of biochemistry as a
		scientific discipline at the graduate level. The emphasis will be
		on the relationship between macromolecular structure and
		function.
QSB	Physical	Physical Biochemistry is the study of properties such as
207	Biochemistry [3]	macromolecular folding, multimerization, structure, and ligand
		binding. This course will instruct students on these, and on the
		experimental techniques that can quantitatively probe these
		properties, including hands-on work with multidimensional
		NMR data. Also included is in-depth discussion of recent
		biophysical literature.
QSB	Responsible	Seminar covering responsibilities and
294	Conduct of	expectations for researchers as well as advice for success in
	Research [1]	graduate school and science careers, required for NIH-funded
		graduate students. <i>S/U grading only.</i>