Currently approved graduate courses in Chemistry:

Course	Title, units	Description
CUEM	Advanced Organia	I ogical approaches to designing syntheses of target argentic
	Synthesis [2]	compounds Introduction to retrosynthetic analyses and
200	Synthesis [3]	hackground on the reactions needed to achieve common
		syntheses, protecting groups and stereoselective
		methodologies Classic syntheses are discussed in the
		context of modern methods. Introduction to literature
		search tools, a practical estimate of the reliability of
		published protocols, and references on chemical
		purification.
CHEM	Organic and	Thermodynamics, statistical mechanics, and molecular
201	Organometallic	orbital theory are used to explain reactivity, product
	Reaction Mechanisms	distributions, the stability of intermediates, and transition
	[3]	state structure. Elements of computational chemistry,
		kinetic methods of interrogation, linear free energy
		relationships, kinetic isotope effects, and other methods for
		empirically constructing plausible reaction mechanisms
CHEM	Bioorganic Chemistry	The molecular basis of biological processes. Methods by
202	[3]	which enzymes catalyze organic reactions; experimental
		methods by which the mechanisms of enzyme-catalyzed
		reactions are elucidated; chemistry of disease states and
		drug action.
CHEM	Molecular and Solid	Theory and practical application of molecular quantum
212	State Quantum	mechanics. Schrödinger equation and matrix
	Chemistry [3]	representations of quantum mechanics; simple exactly
		solvable model problems; calculation of observable
		properties; vibrational and electronic wave functions;
		approximation methods; quantum mechanics of
CHEM	Chamical	Statistical machanica, thermodynamica, and chemical
	Thermodynamics and	kinetics, taught from a perspective that develops the
213	Kinetics [2]	behavior of bulk matter from molecular properties: modern
	(heing replaced by	experimental and theoretical methods in kinetics
	CHEM 214 + 215)	experimental and theoretical methods in kinetics.
CHEM	Chemical Kinetics [3]	The rates and mechanisms of elementary reactions.
215		unimolecular reactions, reactions in the gas phase, in
Ū		solutions and on surfaces. Energy and charge transfer
		phenomena. Kinetics of surface and enzyme catalysis.
		Kinetic modeling of multistep reactions.
CHEM	Molecular	Time-dependent quantum mechanics; interaction of
231	Spectroscopy [3]	radiation with matter; electronic spectra of atoms and
		molecules; vibrational, rotational, and Raman spectra;
		magnetic resonance spectroscopy; X-ray, neutron, and
		electron diffraction. Modern experimental and theoretical
		methods in spectroscopy.
CHEM	Current Topics in	Exploration of current research directions, problems, and
290	Physics and	techniques in molecular and materials chemistry, physics,
	Chemistry [3]	and engineering. Course format emphasizes student-led

		presentation, analysis, and discussion of reading
		assignments from the current and recent scientific
		literature. Topics are determined by the instructor and
		change each semester.
CHEM	Physics and	Graduate seminar in physics and chemistry. <i>S/U grading</i>
291	Chemistry Seminar [1]	only.
CHEM	Graduate Research [1	Supervised research. <i>Permission of instructor required</i> .
295	- 15]	S/U grading only.
CHEM	Directed Group Study	Group project under faculty supervision. <i>Permission of</i>
298	[1 - 6]	instructor required. S/U grading only.
CHEM	Directed Independent	Independent project under faculty supervision. <i>Permission</i>
299	Study [1 - 6]	of instructor required. S/U grading only.

Currently approved graduate courses in other:

PHYS 210	Electrodynamics and Optics I [4]	Introduction to electrodynamics. Electrostatics including Poisson and Laplace equations, Green's theorem and different boundary value problems, polarizability, susceptibility and dielectric media. Magnetostatics, Maxwell's equations, plane electromagnetic waves, polarization of light, electromagnetic radiation in different media.
PHYS 212	Statistical Mechanics [4]	Topics include: General principles of statistical mechanics including microcanonical, macrocanonical and grand canonical ensembles, fluctuations and equilibrium. Thermodynamics including Legendre transforms and Maxwell relations, fluctuations and stability and Landau theory. Quantum statistical mechanics including Bose- Einstein and Fermi-Dirac statistics.
PHYS 237	Quantum Mechanics I [4]	Introductory Quantum Mechanics starting with simple quantum two-state systems and one-dimensional problems, uncertainty relations, solution of Schrödinger's equation for important two and three dimensional physical situations, angular momentum, identical particles and spin statistics. Hydrogen and multi-electron atoms.
PHYS 238	Quantum Mechanics II [4]	Perturbation methods, both stationary and time- dependent, scattering, interaction with electromagnetic fields, Stark effect, measurement theory and decoherence, quantum Hall effect.
PHYS 241	Condensed Matter Physics [4]	An introduction to the physics of materials designed for graduate students in physics or chemistry. The course will cover traditional solid state physics and include topics in soft matter. This class will examine the relationship between microscopic structure and bulk properties.
QSB 207 (to be cross-listed with CHEM)	Physical Biochemistry [3]	Physical Biochemistry is the study of properties such as macromolecular folding, multimerization, structure, and ligand binding. This course will instruct students on these, and on the experimental techniques that can quantitatively probe these properties, including hands-on work with multidimensional NMR data. Also included is in-depth discussion of recent biophysical literature.

QSB 212	Advanced Signal	Signal transduction in mammalian cells with emphasis on
	Transduction and	molecular and genetic regulation of these processes and
	Growth Control [4]	their role in cell function.
QSB 281 (to	Advanced	Introduction to the principles and application of
be cross-	Computational	computational simulations and modeling in biology,
listed with	Biology [4]	ranging from bioinformatics to computational cell
CHEM)		biology. Topics to be covered include genome sequence
		analysis and annotation, phylogenic analysis, protein
		structure prediction, molecular modeling, and docking
		and simulations of metabolic and regulatory networks.
QSB 294	Responsible Conduct	Seminar covering responsibilities and
	of Research [1]	expectations for researchers as well as advice for success
		in graduate school and science careers, required for NIH-
		funded graduate students. <i>S/U grading only</i> .